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Abstract
The diffusion-influenced Michaelis–Menten kinetics in the low substrate
concentration limit is studied in one and three dimensions. For the initial pair
distribution of enzyme and substrate, we obtain the exact analytical results.
We find that at short times the diffusion effect can make the reaction rate
faster. The concentration deviations of the substrate and enzyme show t−1/2

and t−3/2 power-law behaviours in one and three dimensions, respectively, at
long times. On the other hand, the average lifetime of the intermediate is
independent of the initial state in one dimension, while it depends on the initial
state in three dimensions. The ultimate production yield approaches unity in
one dimension but it reaches a different value depending on other parameters
in three dimensions. We also obtain the analytical results for the initial random
distribution.

1. Introduction

The Michaelis–Menten (MM) kinetics [1, 2] has been employed in a wide variety of research
fields in chemistry and biology as one of the prototypical reaction models in the enzyme
kinetics [3]. Recently, a single-molecule MM kinetics has drawn much attention to describe
single-molecule enzyme dynamics [4–6]. The MM scheme can be expressed as

E + S
k1←−−→

k−1

ES
k2−→ E + P, (1)

where E, S, ES and P represent enzyme, substrate, intermediate and product, respectively, and
ki denotes the corresponding reaction rate coefficient. The classical MM kinetics is based on
two main approximations: the assumption that the rate coefficients are independent of time and
the steady-state approximation. The former approximation becomes invalid when the reaction
is strongly influenced by diffusion. Since reactants should be encountered for a reaction to
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occur, diffusion effects are likely to be more pronounced in in vivo than in vitro conditions
where the system can be easily well mixed. It is well known that the diffusion-influenced
reaction strongly depends on the dimensionality of the system and the heterogeneity of the
media [7]. Therefore, biological reactions in a low-dimensional medium like membrane [8–11]
or in a heterogeneous cellular medium [12] are difficult to elucidate using the classical MM
kinetics. Since diffusion is a many-body problem per se and the exact analytical solutions are
rare, one usually has to rely on numerical methods [13–15] or computer simulations [11, 16, 17]
to tackle the diffusion-influenced reaction problems.

Some time ago, Zhou [18] reported that the influence of diffusion on the MM kinetics leads
to a nonlinearity in the Lineweaver–Burk (LB) plot [3] for high substrate concentrations based
on an empirical formula. Later, Kim et al applied the renormalized kinetic theory [19] to the
MM kinetics and confirmed the LB nonlinearity systematically [20]. By ordinary perturbation
methods in the absence of diffusion, Murugan found the LB nonlinearity, which is ascribed to
the effect of transient dynamics [21].

The long time asymptotic behaviour of the MM kinetics in the presence of diffusion shows
t−1/2 power law behaviour [20], contrary to the well known t−3/2 law for the A + B←→C
system. By using a fluctuation theory approach, Paul and Gangopadhyay [22] reported that
the asymptotic behaviour obeys the t−3/2 law if the second step of the MM kinetics is assumed
to be reversible.

In the classical MM kinetics neglecting diffusion effects, we can solve the following
coupled differential equations:

d[E]
dt

= −d[ES]
dt

= −k1[E][S] + (k−1 + k2)[ES], (2)

d[S]
dt

= −k1[E][S] + k−1[S], (3)

d[P]
dt

= k2[ES]. (4)

Numerous theoretical efforts have been devoted to describing the dynamics more
correctly [23–28]. Since these equations are not solvable analytically, the steady-state
approximation of d[ES]/dt ∼ 0 is introduced [2]. The steady-state approximation is valid
when one reactant concentration is much higher than the other, such as [E]0 � [S]0 + KM

or [S]0 � [E]0 + KM , where the subscript 0 denotes the initial concentration and KM =
(k−1 + k2)/k1 [28].

In this way, the limitations of the classical MM kinetics can be too significant to ignore
when [E]0 ≈ [S]0 with the strong diffusion effect [29]. When [E]0 ≈ [S]0, it is difficult
to obtain rigorous analytical results even with the most advanced theories in the diffusion–
reaction fields. However, in the low [S] limit, we can solve the MM kinetics exactly, even
including the diffusion effect, since the competition among substrates can be neglected in this
limit by effectively circumventing the many-body problem.

The purpose of this paper is to provide exact analytical results in the low [S] limit in the
cases where the classical MM kinetics fails. Exact analytical results are important not only
because they can give a crucial theoretical reference to other problems as a special or limiting
case but also because they can be used to devise efficient many-body Brownian dynamics
simulation algorithms [16, 30]. These simulation methods have been successful in obtaining the
numerically exact data in various reversible diffusion-influenced reactions [31, 32]. In addition
to the fact that the present analytical results can be useful to directly explain various interesting
biological phenomena observed at low substrate concentrations [33–35], the exact results can
be used to open the door to obtain the numerically exact data for a general MM kinetics.
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The initial pair distribution of enzyme and substrate is usually not localized but random in
the MM kinetics. We also present the analytical results for this random distribution. Since the
intra-pair reaction region is well separated from the inter-pair one in the low [S] limit [36], an
enzyme molecule can be assumed to react with its nearest neighbour substrate molecule.

By Polya’s theorem [37], which states that the random walker always returns to its starting
point when the system dimension is less than two, three-dimensional diffusion effects often
show qualitative differences from low dimensional effects. For this reason, we present the
results in one dimension (1D) as well as those in three dimensions (3D) and also discuss
differences between the two of them.

2. Exact results

Consider a diffusing pair of spherical molecules of enzyme (E) and substrate (S) with a relative
diffusion constant D (=DE + DS). The reaction between the pair obeys the mechanism of
equation (1). From the normalized mass conservation law, we obtain the following relations:

[S] + [ES] + [P] = [S]0 + [ES]0 ≡ 1,

[E] + [ES] = [E]0 + [ES]0 ≡ 1.
(5)

The bimolecular association reaction can occur instantaneously when two molecules approach
within a reaction distance σ . Let p(r, t) be the probability that S is separated by a distance r
from E at time t . Then the time evolution of p(r, t) can be described by the following field-free
diffusion equation in d dimensions:

∂p(r, t)

∂ t
= D

(
∂2

∂r 2
+ d − 1

r

∂

∂r

)
p(r, t). (6)

The evolution equation of the intermediate [ES] is given by

∂[ES]
∂ t

= k1 p(σ, t) − (k−1 + k2) [ES]. (7)

Moreover, the boundary conditions for equation (6) are given by

Cd(σ )D
∂p(r, t)

∂r

∣∣∣∣
r=σ

= k1 p(σ, t) − (k−1 + k2) [ES],
lim

r→∞ p(r, t) = 0,
(8)

where Cd(r) is unity for 1D and 4πr 2 for 3D.
The concentrations of the substrate and the product can be calculated by

[S] =
∫ ∞

σ

Cd(r)p(r, t) dr, (9)

[P] = k2

∫ t

0
dt[ES], (10)

respectively. Note that [P] can be also calculated from equation (5) once we know [S] and [ES].
In this work, we treat only the case of [S]0 = [E]0 since the contribution to the reaction of the
excess concentration of S or E is negligible in the low concentration limit.

A pair of enzyme and substrate molecules can be initially in the bound (ES) or unbound
(E + S) state. Let [α]r0 denote the concentration of α species at time t for an initial unbound
state for which E is initially separated from S by a separation r0 and [α]∗ for E and S in an
initial bound state.

3
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The average lifetimes of ES may be defined as

τ ∗ ≡
∫ ∞

0
dt[ES]∗, (11)

τ r0 ≡
∫ ∞

0
dt[ES]r0 , (12)

for the initial bound and unbound states, respectively. The concentration of E for an arbitrary
initial distribution p(r0) can be obtained by

[E] =
∫ ∞

σ

[E]0 p(r0)[E]r0Cd(r0) dr0 + [ES]0[E]∗. (13)

The above evolution equations (equations (6)–(8)) can be solved exactly by the methods
developed for the following excited-state reversible geminate reaction with two lifetimes:

A∗ + B
a

d

C∗

↓ k ′
0 ↓ k0

A C

(14)

in 3D [38, 39] and in 1D [40], respectively. The theoretical predictions were confirmed
experimentally [41, 42]. One can see the similarities between equations (1) and (14). In this
paper, we present only the results obtained as follows. First, one can obtain the Green function
p(r, t) for the initial unbound state by solving the coupled differential equations with the aid of
the Laplace transformation technique. Then the integration of p(r, t) using equation (9) gives
[S]. [ES] and, therefore, [P] can be calculated from equations (7) and (10), respectively. For the
initial bound state, the corresponding concentrations can be obtained by utilizing the detailed
balance equation.

2.1. One dimension

The results in 1D can be directly obtained from [40] by making corresponding changes such as
A∗ → E, B → S, C∗ → ES, C → P, ka → k1, kd → k−1, k ′

0 → 0, and k0 → k2 to give

[ES]r0 = k1

D

3∑
i=1

αi�i jk (r0 − σ ), (15)

[ES]∗ =
3∑

i=1

αi (α j + αk)�i jk (0), (16)

[S]r0 = erf

(
r0 − σ

2
√

Dt

)
−

3∑
i=1

(αk + αi )(αi + α j )�i jk (r0 − σ), (17)

[S]∗ = −k−1

D

3∑
i=1

�i jk(0), (18)

[P]r0 = erfc

(
r0 − σ

2
√

Dt

)
+ k1k2

D2

3∑
i=1

1

αi
�i jk (r0 − σ), (19)

[P]∗ = 1 + k2

D

3∑
i=1

(α j + αk)

αi
�i jk (0), (20)

4
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where i = j = k = 1, 2, 3. The error function and its complementary are denoted as erf(x)

and erfc(x), respectively. αi is one of the roots of the following set of coupled equations:

α1 + α2 + α3 = k1/D,

α1α2 + α2α3 + α3α1 = (k2 + k−1) /D,

α1α2α3 = k1k2/D2.

(21)

�i jk(r) is defined as

�i jk(r) = 1

(αk − αi )(αi − α j )
W

(
r

2
√

Dt
, αi

√
Dt

)
,

W (a, b) = exp
(
2ab + b2

)
erfc(a + b).

(22)

Note that W (0, αi

√
Dt) = exp(α2

i Dt)erfc(αi

√
Dt). We omit the expressions for [E] because

they can be easily obtained from those for [ES] using equation (5). One can check that the
steady-state approximation does not hold because [ES] does not become constant.

Using the integral formulae
∫ ∞

0
dt

3∑
i=1

αi (α j + αk)�i jk(0) = 1

D

α1 + α2 + α3

α1α2α3
, (23)

∫ ∞

0
dt

3∑
i=1

αi�i jk(r) = 1

D

1

α1α2α3
, (24)

the average lifetimes of ES can be obtained from equations (11) and (12) to give

τ ∗ = τ r0 = τ = 1/k2. (25)

Interestingly, the lifetime τ is independent of the initial state and is dependent only on k2 in 1D.

2.2. Three dimensions

As in 1D, the results in 3D can be directly obtained from [39] to give

[ES]r0 = k1

r0kD

3∑
i=1

αi�i jk (r0 − σ), (26)

[ES]∗ =
3∑

i=1

αi (α j + αk)�i jk (0), (27)

[S]r0 = 1 − σ

r0

(
1 − [S]σ∞

)
erfc

(
r0 − σ

2
√

Dt

)

+ σ

r0

3∑
i=1

(
1

σαi
− 1

)
(αk + αi )(αi + α j )�i jk(r0 − σ), (28)

[S]∗ = [S]∗∞ + k−1

D

3∑
i=1

(
1

σαi
− 1

)
�i jk(0), (29)

[P]r0 = σ

r0

(
1 − [S]σ∞

)
erfc

(
r0 − σ

2
√

Dt

)
+ k1k2

r0kD D

3∑
i=1

1

αi
�i jk (r0 − σ), (30)

[P]∗ = 1 − [S]∗∞ + k2

D

3∑
i=1

(α j + αk)

αi
�i jk(0), (31)

5



J. Phys.: Condens. Matter 19 (2007) 065137 H Kim and K J Shin

where αi is one of the roots of the following set of coupled equations different from those in
1D:

α1 + α2 + α3 = (1 + k1/kD) /σ,

α1α2 + α2α3 + α3α1 = (k2 + k−1) /D,

α1α2α3 = [
k2 (1 + k1/kD) + k−1

]
/ (Dσ ) ,

(32)

where kD ≡ 4πσ D. The definitions of [S]∗∞ and [S]σ∞ are given by

[S]∗∞ = k−1

k−1 + k2 (1 + k1/kD)
, (33)

[S]σ∞ = k2 + k−1

k−1 + k2 (1 + k1/kD)
, (34)

where the subscript ∞ denotes the long time value.
The expressions for various concentrations in 3D are very similar to those in 1D. The

expressions for [ES] are the same as those in 1D and those for [P] show the same expressions
except the [S]∞ term and the factor of σ/r0. On the other hand, the expressions for [S]
are somewhat different because they are obtained by the integration with respect to different
volume elements (equation (9)).

Using equations (23) and (24), the average lifetimes of ES in 3D for the initial bound and
unbound states can be obtained, respectively, as

τ ∗ = 1 + k1/kD

k2 (1 + k1/kD) + k−1
, (35)

τ r0 = σ

r0

k1/kD

k2 (1 + k1/kD) + k−1
. (36)

By comparing these results with equation (25), we can observe two distinctive features in the
lifetimes of ES in 3D: One is τ ∗ = τ r0 , which comes from the fact that the escape probability
is not zero in 3D. The other is that τ depends not only on k2 but also on k1, k−1, and kD.

3. Solutions for random initial distribution

The initial distribution of enzyme and substrate molecules is usually the Poisson distribution
rather than the localized one. Utilizing equation (13), we can obtain the probability functions
for the random initial distribution, p(r0) = exp{−Vd(r0)[E]0}, where Vd(r) is r for 1D and
(4/3)πr 3 for 3D. Unlike the localized distribution, the random one depends on the initial
concentration [E]0 or [S]0 since the separated distance is larger at lower concentration. For
instance, [E] for the random initial distribution can be calculated by

[E]ran =
∫ ∞

0
dr0[E]0Cd(r0) exp {−Vd(r0)[E]0} [E]r0 . (37)

We can obtain the exact closed-form solutions for the random initial distribution in 1D.
However, the analytic integrations are not possible in 3D, and we will show the results in 3D
only in the low [S] limit.

3.1. Exact results in 1D

In 1D, the results are given by

[ES]ran = −k1

D

⎛
⎝ [S]2

0W
(

0, [S]0

√
Dt

)
(α1 − [S]0) (α2 − [S]0) (α3 − [S]0)

+
3∑

i=1

αi [S]0�i jk (0)

αi − [S]0

⎞
⎠ , (38)

6
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[S]ran = (α1 + α2 + α3) [S]2
0 + α1α2α3

(α1 − [S]0) (α2 − [S]0) (α3 − [S]0)
W

(
0, [S]0

√
Dt

)

+
3∑

i=1

(αk + αi )(αi + α j )[S]0

(αi − [S]0)
�i jk(0), (39)

[P]ran = 1 −
α1α2α3W

(
0, [S]0

√
Dt

)
(α1 − [S]0) (α2 − [S]0) (α3 − [S]0)

−
3∑

i=1

α1α2α3[S]0

αi (αi − [S]0)
�i jk(0). (40)

3.2. The low [S] limit

When there are many pairs in the system, the inter-pair reactions as well as the intra-pair
reactions can occur. This competition effect cannot be solved without tackling a many body
problem. In the low [S] limit, the competition effect can be neglected and we can obtain the
following analytical solutions.

3.2.1. One dimension

lim
[S]0→0

[ES]ran = −k1

D
[S]0

3∑
i=1

�i jk(0), (41)

lim
[S]0→0

[S]ran = 1 − [S]0

[
2
√

Dt√
π

− (k−1 + k2) D

k1k2

]
+ [S]0

3∑
i=1

(αk + αi )
(
αi + α j

)
αi

�i jk(0),

(42)

lim
[S]0→0

[P]ran = [S]0

[
2
√

Dt√
π

− (k−1 + k2) D

k1k2

]
− [S]0

k1k2

D2

3∑
i=1

�i jk (0)

α2
i

. (43)

3.2.2. Three dimensions

lim
[S]0→0

[ES]ran = k1

k−1
[S]∗∞[S]0 + k1

D
[S]0

3∑
i=1

(
1

σαi
− 1

)
�i jk(0), (44)

lim
[S]0→0

[S]ran = 1 + 4πσ 2[S]0

3∑
i=1

(
1

σαi
− 1

)2 (αk + αi )
(
αi + α j

)
αi

�i jk(0)

− [S]0
(
1 − [S]σ∞

) [
kDt + 4πσ 2

(
1 − [S]σ∞

) (
2
√

Dt√
π

− σ [S]σ∞
)

− kD

k−1
[S]∗∞ + kD

k2
[S]σ∞

]
, (45)

lim
[S]0→0

[P]ran = [S]0
(
1 − [S]σ∞

) [
kDt + 4πσ 2

(
1 − [S]σ∞

) (
2
√

Dt√
π

− σ [S]σ∞
)

− [S]∗∞
k−1

(kD + k1)

]
+ k1k2

D2
[S]0

3∑
i=1

(
1

σαi
− 1

)
�i jk(0)

α2
i

. (46)

It should be noted that the results in this subsection can be obtained by taking the low [S] limit
of the pseudo-first-order MM kinetics ([E]0 � [S]0) described by the renormalized kinetic
theory reported earlier [20].
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4. Asymptotic results

In the excited-state geminate reaction with two lifetimes, we can observe a kinetic transition
behaviour in the long time asymptotic result: the A regime with the power-law relaxation and
the AB regime with the exponential behaviour separated by the transition region [39]. For the
MM reaction, however, it always obeys the power-law behaviour at long times and no kinetic
transition appears. At short and long times, the asymptotic expressions of �i jk(r) can be
obtained by using the following asymptotic expressions:

lim
t→0

W

(
a√

t
, b

√
t

)
∼ erfc

(
a√

t

)
, (47)

lim
t→∞ W

(
a√

t
, b

√
t

)
∼ 1

b
√

π t
− 2a2b2 + 1 + 2ab

2b3t
√

π t
. (48)

4.1. Short-time behaviours

At short times, the concentrations for the initial unbound state are zero (∼t1/2 exp(−1/t))
except when r0 = σ . We find that the concentrations for the initial bound state in the short time
limit show the same expressions for both 1D and 3D as follows:

lim
t→0

[ES]∗ ∼ 1 − (k2 + k−1) t, (49)

lim
t→0

[S]∗ ∼ k−1t, (50)

lim
t→0

[P]∗ ∼ k2t . (51)

For the initial bound state, the concentrations become the same as those in the classical kinetics
without diffusion. This can be explained by the fact that the diffusion effect is not fully
developed yet at short times. Therefore, they do not depend on the dimensionality of the system.

For the initial random distribution, the results are

lim
[S]0→0

t→0

[ES]ran ∼ k1[S]0t, (52)

lim[S]0→0
t→0

[S]ran ∼ 1 − k1[S]0t . (53)

Again they are the same as in the classical kinetics and independent of the dimensionality.
When r0 = σ , the short time asymptotic concentrations for the initial unbound state show

different behaviours both in 1D and 3D:

lim
t→0

[ES]σ ∼ 2k ′
d√

π D
t1/2, (54)

lim
t→0

[S]σ ∼ 1 − 2k ′
d√

π D
t1/2, (55)

lim
t→0

[P]σ ∼ 4k ′
dk2

3
√

π D
t3/2, (56)

with k ′
d = k1 in 1D and k ′

d = k1/4πσ 2 in 3D.

4.2. Long-time behaviours

Although the inter-pair reaction is dominant at very long times, there is a large timescale
separation between intra-pair and inter-pair reaction regions at low concentration [36]. Given
this timescale separation, we find the long time asymptotic concentrations in 1D and 3D,
respectively, as follows:

8
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4.2.1. One dimension

lim
t→∞[ES]r0 ∼

(
r0 − σ + (k2 + k−1) D

k1k2

)
1

2k2

1√
Dπ

t−3/2, (57)

lim
t→∞[ES]∗ ∼ k−1

2k1k2
2

√
D

π
t−3/2, (58)

lim
[S]0→0
t→∞

[ES]ran ∼ [S]0

k2

√
D√
π t

, (59)

lim
t→∞[S]r0 ∼

[
r0 − σ + (k2 + k−1) D

k1k2

]
1√
Dπ

t−1/2, (60)

lim
t→∞[S]∗ ∼ k−1

k1k2

√
D

π
t−1/2. (61)

lim
[S]0→0
t→∞

[S]ran ∼ 1 − [S]02
√

Dt√
π

. (62)

4.2.2. Three dimensions

lim
t→∞[ES]r0 ∼ [S]r0∞[S]∗∞

k1

k−1
(4π Dt)−3/2 , (63)

lim
t→∞[ES]∗ ∼ ([S]∗∞

)2 k1

k−1
(4π Dt)−3/2 , (64)

lim
[S]0→0
t→∞

[ES]ran ∼
(
1 − [S]σ∞

)
kD[S]0

k2

[
1 + (

1 − [S]σ∞
) σ√

π Dt

]
, (65)

lim
t→∞[S]r0 ∼ [S]r0∞

[
1 + (

1 − [S]σ∞
)
σ (π Dt)−1/2

]
, (66)

lim
t→∞[S]∗ ∼ [S]∗∞

[
1 + (

1 − [S]σ∞
)
σ (π Dt)−1/2

]
, (67)

lim[S]0→0
t→∞

[S]ran ∼ 1 − [S]0
(
1 − [S]σ∞

)
kDt, (68)

where [S]∗∞ is given by equation (33) and

[S]r0∞ = r0 − σ

r0
+ σ

r0

k2 + k−1

k−1 + k2 (1 + k1/kD)
. (69)

When r0 = σ , the value of [S]r0∞ becomes that of [S]σ∞.
The relation [P] =

t→∞ 1 − [S] holds because [ES] decreases more rapidly than [S] for

both dimensions. Therefore, the long time results of [P] can be obtained from this relation.
Interestingly, for the larger initial separation, more ES and S survive at long times.

All the concentrations show universal power-law behaviours in the long time limit,
irrespective of the microscopic parameters. The asymptotic power laws for initial random
distribution are different from those for initial pair distribution. Interestingly, the t−3/2 power-
law behaviours of [ES] in 1D and 3D are the same, whereas the long time behaviours of [S] are
different since the escape probability is not zero in 3D, confirming Polya’s theorem [37]. Note
that [P] does not converge to unity in 3D for the same reason.
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Figure 1. The time dependence of [P]∗ for the classical and the diffusion-influenced kinetics in 1D
and 3D. The parameter values are D = 1, σ = 1, and k1 = k−1 = k2 = 1. Note that [P]∗ converges
to unity in 1D and to 0.519 in 3D.

5. Results and discussions

The numerical solution of the classical kinetics can be easily obtained by solving equations (2)–
(4) [43]. In figure 1, we plot a time profile of [P]∗ from the numerical solution of the classical
kinetics in comparison with those including the diffusion effect in 1D (equation (20)) and 3D
(equation (31)). Dimensionless parameters are used as D = 1, σ = 1, and k1 = k−1 = k2 = 1.
Notice that, in 1D, the values of αi do not depend on σ and so neither does [P]∗. The figure
shows that the diffusion effect makes the production rate slower in the long time limit in both
dimensions. The ultimate yield of the product converges to unity in 1D whereas to a different
value of k2(1 + k1/kD)/[k−1 + k2(1 + k1/kD)] (∼0.519 for the present parameter set) in 3D,
which can be easily seen from the relation [P] =

t→∞ 1 − [S] and equation (33).

Interestingly, the diffusion effect can make the production rate faster at short times. This
can also be explained by the fact that, by stirring the system (for which the diffusion effect is
insignificant and the classical kinetics description can usually be employed), a molecule near
its reaction partner can escape far away, which leads to the slower reaction rate at short times.
In the diffusion-influenced kinetics, the diffusion coefficient (D) and the molecule size (σ ) are
crucial parameters, whereas the classical kinetics does not depend on them. The dependence
of D and σ , however, affects the kinetics differently for the different dimensionality of the
media. In 1D (equation (19)) only D affects the reaction, and both D and σ are important in
3D (equation (30)). This point is clearly shown in figure 2, where [P]σ is plotted for two values
of σ = 0.1 and 0.01. Other parameters are the same as in figure 1. While the results of the
classical kinetics and 1D results considering diffusion effects are independent of the molecule
size, the production rate in 3D becomes faster with decreasing molecule size. Therefore, the
product concentration in 3D can be higher than that in 1D at short times. This is an interesting
point since [P] is always higher in 1D than in 3D at long times.

We plot the time dependences of the deviation of the substrate concentration ξS(t) ≡
([S]σ − [S]σ∞)/([S]0 − [S]σ∞) and that of the enzyme concentration ξE(t) ≡ [E]σ∞ − [E]σ
in a log–log scale in figures 3 and 4, respectively. We normalize ξS(t) since the value of
[S]σ∞ is not trivial in 3D. The parameter values are the same as in figure 1. In the classical
kinetics, the concentrations approach their equilibrium values exponentially while the diffusion
effects make the deviations decay with the power-laws. The concentration deviations of
the substrate ξS(t) and the enzyme ξE(t) show the t−1/2 and t−3/2 asymptotic power-law

10
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Figure 2. The time dependence of [P]σ in 1D and 3D for two values of σ = 0.01 and σ = 0.1.
The diffusion-influenced kinetics in 1D shows the same behaviour for both values. Other parameter
values are the same as in figure 1.
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Figure 3. The time dependence of the normalized concentration deviation of substrate, ξS(t) ≡
([S]σ − [S]σ∞)/([S]0 − [S]σ∞), in a log–log plot for the classical (an exponential decay) and the
diffusion-influenced kinetics in 1D and 3D (the power-law decay of t−1/2). The parameter values
are the same as in figure 1 except [S]0 = 1.
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Figure 4. The time dependence of the deviation of enzyme concentration, ξE(t) ≡ [E]σ∞ − [E]σ , in
a log–log plot for the classical and the diffusion-influenced kinetics in 1D and 3D (the power-law
decay of t−3/2). The parameter values are the same as in figure 1.
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behaviours, respectively, in both dimensions. This is very intriguing because these power-
law behaviours are very different from the well known t−d/2 behaviour for A + B ↔ C type
reactions in d dimensions [44–47]. These are also different from the t−1/2 power-law behaviour
for ξE(t) previously observed for [E]0 � [S]0 [20].

6. Concluding remarks

We have investigated diffusion-influenced Michaelis–Menten kinetics in the low substrate
concentration limit in 1D and 3D. We can obtain the analytical results for the initial pair
distribution and for the initial random distribution. The diffusion effect makes the approach to
the equilibrium slower by replacing the exponential decay of classical kinetics with the power-
law decay. The long time power-law behaviours observed both in 1D and 3D are different
from previously reported behaviours. Because of different power-law behaviours of reactants,
the intermediate molecules ES disappear faster than the substrate and, therefore, the relation
[P] =

t→∞ 1 − [S] holds at long times.

Qualitative differences between 1D and 3D are found. While the ultimate long time value
of [P]/[E]0 is unity in 1D as in the classical kinetics, it is not unity in 3D. The average lifetime
of ES is independent of the initial state and depends only on k2 in 1D, but it depends on the
initial state as well as on k1, k−1, and k2 in 3D. At short times, the diffusion effect can make the
reaction rate faster than that of the classical kinetics, since stirring the system makes a molecule
near its reaction partner move far away.

The present results are also applicable to a reaction model similar to Michaelis–Menten
kinetics. For example, the following diffusion-influenced protein folding mechanism of the
dimeric folding unit [48] can be described by the present results.

2E
k1←−−→

k−1

E2
k2−→ P. (70)

Diffusion-influenced enzyme kinetics has often been studied by Monte Carlo simulation
methods employing a random walker model on the lattice [11, 17, 49]. However, the
relation between the microscopic reaction probability and the phenomenological rate is still
ambiguous [50]. This ambiguity prevents the rigorously quantitative comparison between
simulation results and the theoretical predictions beyond qualitative comparisons. Brownian
dynamics simulations incorporating the exact analytical results are very useful for the
quantitative comparison [16, 30–32]. The present exact results provide the algorithm for the
Brownian dynamics simulation to obtain numerically exact data for general mechanisms in
enzyme kinetics including the competitive or non-competitive inhibition and multi-substrate
enzyme systems. The work on the Brownian dynamics simulation will be reported shortly.
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